Advanced Fiber-Optic / Optoelectronic /Photonic Module Manufacturing for Future Generation Military/Aerospace Applications

Mark W. Beranek

The Boeing Company

Phantom Works

P.O. Box 3999

Mailstop 3W-51

Seattle, Washington 98124

Tel: 253-657-5748

Fax: 253-657-8903

mark.w.beranek@boeing.com

In2m Workshop Presentation Outline

- Avionics/Aerospace Fiber-Optic Network Components
- Workshop Question #1: Questions and Answers
- Recent Developments Support the In2m Concept
- Future Requirements Embrace the In2m Concept
- Summary

First Generation Military/Aerospace Fiber-Optic Application Platforms

Fiber-Optic Component Development Experiences

- Boeing 777 ARINC 636 Transmitter and Receiver
- Boeing 1773 Transceiver (Space Shuttle, Satellites)
- Air Force F-22 High Speed Data Bus and Fiber-Optic Transmitter/Receiver
- NASA International Space Station Fiber-Optic Transmitter and Receiver

 Advanced Device, Process, Manufacturing Research and Development (including DARPA and NIST programs)

In2m Workshop Issues are In-Synch with Military/Aerospace System and Component Design Issues

In2m Size System Issues

- Affordability
- Durability
- Reliability

- Repeatability
- Stability

High Level System Issues

- Affordability
- Lethality
- Supportability
- Survivability

Component Level Issues

- Manufacturability
- Producibility
- Reliability/Durability
- Testability

Key Military/Aerospace Fiber-Optic Design, Process, and Manufacturing Engineering Challenges/Requirements

- Hermeticity Lifetime/Alignment Lifetime
 - 1,000+ temperature cycle qualification
 - Wider temperature extremes (l.e., -55 to +125°C)
 - 20-25 year lifetimes.
- Small Form Factor (3.5 mm/0.140 in thick)
- Pressure Cycling (I.e., below sea level to 80,000 feet, below sea level to outer space, etc.)
- Vibration, Mechanical Shock, Thermal Shock, Acceleration, Moisture/Humidity, Salt Fog, etc.
- High Manufacturing Yield Required (100% Inspection and 100% Testing)
 - Assembly processes must be very robust/repeatable
 - Assembly equipment must be very stable/repeatable
 - Inspection and testing must be labor efficient.

Boeing AS1773 Transceiver

First Generation Military/Aerospace Fiber-Optic Module Packaging Summary

- LED based links, multimode optical fiber, variable data rates, variable wavelengths, variable packaging solutions (MCM-C, LTCC, pigtailed, connectorized).
- Excellent performance and reliability.
- Little commonality other than
 - hermetically sealed
 - active alignment optical subassemblies.
- Primary issues remain:
 <u>AFFORDABILITY</u>
 and
 <u>TECHNOLOGY UPGRADE READINESS</u>

In2m Workshop Questions and Answers

- 1) Are current equipment and practices able to meet the expected demands for part <u>presentation</u>, <u>staging</u>, <u>placement</u>, and <u>fastening</u>? No, No, No, No (current equipment and practices barely suffice for first generation fiber-optic component manufacturing).
- 2) Are these systems <u>adaptable</u>, and if so, will they be <u>affordable</u>? Somewhat Adaptable, Probably Not Affordable.
- 3) Are <u>revolutionary solutions</u> needed meet the demands expected by In2m? Yes, Future requirements will demand significant design, assembly, packaging, and manufacturing <u>innovations</u>.

Multimode Optical Fiber to LED Alignment

Note: Future Singlemode Fiber Based Systems Will Require +/- 1 μm to +/- 2 μm Assembly Precision.

In the Future: Current Assembly Equipment and Manufacturing Practices May Not Be Affordable

Robotic Fiber-Optic Module Pigtailing NIST ATP Precision Optoelectronics Assembly Consortium

<u>Goal</u>

Technology
Robot Platform
Precision Assembly
Platform and Processes.

Key Milestones

- Alignment / Bond Shift Characterization
- Automated OE Parts Feeding
- Machine Vision for Fibers and OE Devices
- Sub-micron Automated Alignment
- Automated Device Bonding

Active Alignment versus Passive Alignment

Rugged, Durable Multimode Passive Alignment LED Optical Fiber Subassembly

- Wafer scale silicon micromachining
- Precision ceramic molded optoelectronic device submount
- 3D ---> 2D alignment

(Patent Pending)

MEMS 3-Axis In Package Micro Aligner

- MEMS device for 3 axis control of the attached optical fiber.
- Eliminates the need for external effectors for fiber-optic manipulating and fiber-optic pigtailing systems.
- Made by wafer scale silicon microbench and LIGA processing.
- Actuator forces and displacement sufficient for practical device pigtailing.
- Easily fits inside typical optoelectronic module housings.

Reference:

48th IEEE Electronic Components and Technology Conf., Conference Proceedings, pp. 1446 - 1449, May, 1998.

MEMS In Package Micro Aligner Hybrid Fiber-Optic Laser Transmitter Package Layout

Reference:

48th IEEE Electronic Components and Technology Conf., Conference Proceedings, pp. 1446 - 1449, May, 1998.

Ruggedized, Connectorized Array Transmitter and Receiver Module

16 Wavelength Optical Waveguide Spectrograph Wavelength Division Multiplexing Receiver

- Monolithic, manufacturable, durable, stable, packagable In2m precision device.
- Three different ceramic materials, CTE matched to within 1X10⁻⁶
- Replicated diffraction grating (~300 nm pitch)
- 10 nm (FWHM) resolution
- Interlayer spectral referencing References:
- 1) IEEE Components, Hybrids, and Manufacturing Tech., vol. 16, 1993.
- 2) IEEE J. Lightwave Tech., vol. 11, 1993.

Summary

- Packaging innovation played a key role in the success of first generation military/aerospace fiber-optic network development/deployment.
- More packaging innovation is required for:
 - First generation component cost reduction;
 - Next generation component development;
 - Affordable next generation component manufacturing.
- Forecasted next generation military/aerospace fiber-optic component requirements indicate new, higher precision, higher density, and more compact advanced fiber-optic components will be required. Assembly processes and assembly equipment developments must somehow keep pace......